Affordable Access

Publisher Website

Rickettsia conorii Transcriptional Response within Inoculation Eschar

Authors
Journal
PLoS ONE
1932-6203
Publisher
Public Library of Science
Publication Date
Volume
3
Issue
11
Identifiers
DOI: 10.1371/journal.pone.0003681
Keywords
  • Research Article
  • Infectious Diseases
  • Genetics And Genomics/Gene Expression
  • Microbiology/Cellular Microbiology And Pathogenesis
  • Infectious Diseases/Bacterial Infections
Disciplines
  • Biology

Abstract

Background Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. Methodology/Principal Findings Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211) of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. Conclusion/Significance Because eschar is a site for rickettsial introduction, the pattern of rickettsial gene expression observed here may define how rickettsiae counteract the host defense.

There are no comments yet on this publication. Be the first to share your thoughts.