Affordable Access

Publisher Website

The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

Authors
Journal
Lipids in Health and Disease
1476-511X
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Volume
10
Issue
1
Identifiers
DOI: 10.1186/1476-511x-10-129
Keywords
  • Research
Disciplines
  • Biology

Abstract

Background The endocannabinoid system (ECS) is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoylglcyerol (2-AG), and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI), or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose) or serum adipokine levels (adiponectin, leptin or resistin). In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

There are no comments yet on this publication. Be the first to share your thoughts.