Affordable Access

Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol

Authors
Publisher
Elsevier
Publication Date
Keywords
  • Transfer Factor
  • Ionic Properties
  • Root
  • Soil
  • Mycorrhiza
  • Ectomycorrhiza
  • Rare Elements
  • Biology And Life Sciences

Abstract

The root/organic soil concentration ratio; R/S) of 50 cationic mineral elements was related to their ionic properties, including ionic radius (r), ionic charge (z), and ionic potential (z/r or z(2)/r). The materials studied were ectomycorrhizal beech (Fagus sylvatica L.) roots and their almost purely organic soil substrate, the O-horizon (mor; raw humus) of a Podzol in South Sweden, developed in a site which has been untouched by forestry or other mechanical disturbance since at least 50 years and located in an area with no local sources of pollution. Elements determined by ICP-AES were aluminium, barium, calcium, iron, potassium, magnesium, manganese, sodium and strontium. Determined by ICP-MS were silver, beryllium, bismuth, cadmium, cerium, cobalt, chromium, caesium, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, mercury, holmium, indium, lanthanum, lithium, lutetium, niobium, neodymium, nickel, lead, praseodymium, rubidium, scandium, samarium, tin, terbium, thorium, titanium, thallium, thulium, uranium, vanadium, yttrium, ytterbium, zinc and zirconium. The R/S ratios were most clearly related to the ionic potential of the cationic elements studied, which accounted for approximately 60% of the variability in R/S among elements. The ionic charge of an element was more important than the ionic radius. Elements with high ionic charge had low R/S ratios and vice versa. No clear differences in R/S between essential and non-essential plant nutrients were observed, especially when ions of similar charge were compared.

There are no comments yet on this publication. Be the first to share your thoughts.