Affordable Access

Publisher Website

Enhanced G-protein-induced relaxation in portal hypertensive rats: Role of nitric oxide

Wiley Blackwell (John Wiley & Sons)
Publication Date
DOI: 10.1053/jhep.1997.v26.pm0009214448
  • Biology


Abstract Portal hypertension (PHT) is characterized by splanchnic hyperemia due to a reduction in mesenteric vascular resistance. The reasons for the decreased resistance include an increased responsiveness to a vasodilator substance. Because the activation of an inhibitory guanine nucleotide regulatory (Gi) protein can result in endothelium-dependent relaxation, we tested the hypothesis that exaggerated Gi-protein induced relaxation via a nitric oxide (NO)-dependent pathway partly reflects the enhanced Gi-protein expression in PHT vessels. PHT was created in Sprague-Dawley rats by a partial portal-vein ligation. Control animals were sham operated. Using isolated vascular rings in the absence or presence of an intact endothelium, N G-nitro- l-arginine methyl ester ( l-NAME), and pertussis toxin, dose response relationships for sodium fluoride (NaF; range, 0.1-4 mmol/L), a Gi protein activator, were determined in a cumulative manner. Gi-protein expression was determined by Western blotting. NaF caused a dose-dependent relaxation in both sham and portal hypertensive pre-contracted vessels, an effect that was significantly inhibited by pertussis toxin, endothelial denudation, and l-NAME. Concentrations of NaF greater than 4 mmol/L caused contractions, an effect that was unaffected by l-NAME. The NaF-induced relaxation response was significantly greater in PHT vessels as compared with sham concomitant with increased Gi-protein expression in PHT vessels. These data suggest that the enhanced endothelial Gi-protein-induced relaxation in PHT vessels may partly reflect enhanced expression of Gi-proteins in PHT vessels and may, thus, represent an important mechanism for exaggerated NO-dependent relaxation in the PHT vasculature. (Hepatology 1997 Jul;26(1):27-33)

There are no comments yet on this publication. Be the first to share your thoughts.