Affordable Access

Publisher Website

Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry

Clinical Biochemistry
Publication Date
DOI: 10.1016/j.clinbiochem.2009.08.028
  • Fragmentography
  • Mass Isotopomer
  • Plasma Fructose
  • Chemistry
  • Medicine


Abstract Objective: The impact of increased fructose consumption on carbohydrate metabolism is a topic of current interest, but determination of serum level has been hindered due to low concentration and interference from serum glucose. We are reporting a method for the quantification of glucose and fructose in clinical samples using gas chromatography/mass spectrometry (GC/MS). The accuracy and precision of GC/MS and an enzymatic assay were compared. Design and methods: Mass spectrometry fragmentation patterns of methyloxime peracetate derivatized aldose and ketose were determined. Unique fragments for glucose and fructose were used for quantitative analysis using isotope labeled recovery standards. Results: Methyloxime peracetate derivatives of glucose and fructose showed characteristic loss of acetate (M-60) or ketene (M-42) under chemical ionization (CI). Under electron impact (EI) ionization, a unique C1–C2 fragment of glucose was formed, while a C1–C3 fragment was formed from keto-hexoses. These unique fragments were used in the quantitative assay of glucose and fructose in clinical samples. In clinical samples, the GC/MS assay has a lower limit of detection than that of the enzymatic assay. In plasma samples from patients evaluated for diabetes the average serum glucose and fructose were 6.19 ± 2.72 mM and 46 ± 25.22 μM. Fructose concentrations in many of these samples were below the limit of detection of the enzymatic method. Conclusion: Derivatization of aldose and ketose monosaccharides to their respective O-methyloxime acetates for GC/MS analysis is a facile method for determination of serum/plasma glucose and fructose samples.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times