Affordable Access

Extreme lymphoproliferative disease and fatal autoimmune thrombocytopenia in FasL and TRAIL double-deficient mice

Authors
  • Sedger, LM
  • Katewa, A
  • Pettersen, AK
  • Osvath, SR
  • Farrell, GC
  • Stewart, GJ
  • Bendall, LJ
  • Alexander, SI
Publication Date
Apr 22, 2010
Source
UTS Institutional Repository
Keywords
License
Unknown
External links

Abstract

To delineate the relative roles of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand in lymphocyte biology and lymphoproliferative disease, we generated mice defective in both molecules. B6.GT mice develop severe polyclonal lymphoproliferative disease because of accumulating CD3+CD4-CD8-B220+T cells, CD4+and CD8+T cells, and follicular B cells, and mice die prematurely from extreme lymphocytosis, thrombocytopenia, and hemorrhage. Accumulating lymphocytes resembled antigen-experienced lymphocytes, consistent with the maximal resistance of B6.GT CD4+and CD8+T cell to activation-induced cell death. More specifically, we show that TRAIL contributes to Fas ligandmediated activation-induced cell death and controls lymphocyte apoptosis in the presence of interferon-γ once antigen stimulation is removed. Furthermore, dysregulated lymphocyte homeostasis results in the production of anti-DNA and rheumatoid factor autoantibodies, as well as antiplatelet IgM and IgG causing thrombocytopenia. Thus, B6.GT mice reveal new roles for TRAIL in lymphocyte homeostasis and autoimmune lymphoproliferative syndromes and are a model of spontaneous idiopathic thrombocytopenia purpura secondary to lymphoproliferative disease. © 2010 by The American Society of Hematology.

Report this publication

Statistics

Seen <100 times