Affordable Access

Extracting Symbolic Rules for Medical Diagnosis Problem

Authors
  • Kamruzzaman, S. M.
Type
Published Article
Publication Date
Sep 25, 2010
Submission Date
Sep 25, 2010
Identifiers
arXiv ID: 1009.4978
Source
arXiv
License
Yellow
External links

Abstract

Neural networks (NNs) have been successfully applied to solve a variety of application problems involving classification and function approximation. Although backpropagation NNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained NNs for the users to gain a better understanding of how the networks solve the problems. An algorithm is proposed and implemented to extract symbolic rules for medical diagnosis problem. Empirical study on three benchmarks classification problems, such as breast cancer, diabetes, and lenses demonstrates that the proposed algorithm generates high quality rules from NNs comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy.

Report this publication

Statistics

Seen <100 times