Affordable Access

Extensive esterification of adrenal C19-delta 5-sex steroids to long-chain fatty acids in the ZR-75-1 human breast cancer cell line.

  • Poulin, R
  • Poirier, D
  • Merand, Y
  • Thériault, C
  • Bélanger, A
  • Labrie, F
Published Article
The Journal of biological chemistry
Publication Date
Jun 05, 1989
PMID: 2524485


Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids. DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor [3H]delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids. The rapid rate and large extent of esterification of DHEA and delta 5-diol to long-chain fatty acids in breast cancer cells indicate that this reaction could constitute an important regulatory step in the estrogenic action of DHEA and delta 5-diol in these cells.

Report this publication


Seen <100 times