Affordable Access

deepdyve-link
Publisher Website

Extending KIDs to the Mid-IR for Future Space and Suborbital Observatories

Authors
  • Perido, J.1
  • Glenn, J.1
  • Day, P.2
  • Fyhrie, A.1
  • Leduc, H.2
  • Zmuidzinas, J.3
  • McKenney, C.1
  • 1 University of Colorado at Boulder,
  • 2 NASA Jet Propulsion Laboratory (JPL),
  • 3 California Institute of Technology,
Type
Published Article
Journal
Journal of Low Temperature Physics
Publisher
Springer US
Publication Date
Feb 14, 2020
Volume
199
Issue
3
Pages
696–703
Identifiers
DOI: 10.1007/s10909-020-02364-y
PMID: 32624618
PMCID: PMC7319424
Source
PubMed Central
Keywords
License
Unknown

Abstract

The galaxy evolution probe (GEP) is a concept for a probe-class space observatory to study the physical processes related to star formation over cosmic time. To do so, the mid- and far-infrared (IR) spectra of galaxies must be studied. These mid- and far-IR observations require large multi-frequency arrays, sensitive detectors. Our goal is to develop low NEP aluminum kinetic inductance detectors (KIDs) for wavelengths of 10–400  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} μ m for the GEP and a pathfinder long-duration balloon (GEP-B) that will perform precursor GEP science. KIDs for the lower wavelength range (10–100  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} μ m ) have not been previously implemented. We present an absorber design for KIDs sensitive to wavelengths of 10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} μ m shown to have around 75–80% absorption efficiency through ANSYS HFSS (high-frequency structure simulator) simulations, challenges that come with optimizing our design to increase the wavelength range, initial tests on our design of fabricated 10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }{{\hbox {m}}}$$\end{document} μ m KIDs, and theoretical NEP calculations.

Report this publication

Statistics

Seen <100 times