Affordable Access

Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting.

Authors
  • Van der Zee, C E
  • Nielander, H B
  • Vos, J P
  • Lopes da Silva, S
  • Verhaagen, J
  • Oestreicher, A B
  • Schrama, L H
  • Schotman, P
  • Gispen, W H
Type
Published Article
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
Publication Date
Oct 01, 1989
Volume
9
Issue
10
Pages
3505–3512
Identifiers
PMID: 2552034
Source
Medline
License
Unknown

Abstract

Recently it has been shown that B-50 is identical to the neuron-specific, growth-associated protein GAP43. The present study reports on the fate of B-50/GAP43 mRNA and B-50/GAP43 protein, determined by radioimmunoassay, in a rat model of peripheral nerve regeneration (sciatic nerve crush) over a period of 37 and 312 d, respectively. Moreover, the effects of repeated subcutaneous injection of the neurotrophic peptide Org.2766 (an ACTH4-9 analog) and of a conditioning lesion on B-50/GAP43 protein levels in the regenerating nerve and dorsal root ganglia (DRG) were investigated. Both treatments enhanced the functional recovery as evidenced by a foot-flick withdrawal test. Immunocytochemical analysis using antineurofilament antibodies revealed a peptide-induced increase in the number of outgrowing sprouts in the sciatic nerve. Both the peptide and the conditioning lesion amplified the crush lesion-induced increase in B-50 protein content in the nerve as determined by radioimmunoassay. B-50 protein levels seem to correlate proportionally with the number of sprouts. In the DRG of the crushed sciatic nerve, the time course of B-50 expression was studied. B-50 mRNA was quantified from Northern blots. A linear increase up to 10 times the basal level of B-50 mRNA was observed 2 d postsurgery, followed by a gradual decline to normal levels at day 37. The first significant rise in B-50 mRNA level became apparent between 8 and 16 hr after placement of the crush lesion. The first significant rise in B-50 protein level occurred 40 hr after the crush lesion, reaching a plateau of 3 times the basal level between day 6 and 20. B-50 protein levels in DRG cell bodies remained elevated up to 60 d after crush, a period much longer than that observed for B-50 mRNA. Thus, during a later phase of peripheral axonal regeneration, the presence of B-50 appears to be prolonged, probably by an increase in half-life and not so much by enhanced transcription. Treatment with Org.2766 did not affect the B-50/GAP43 levels in DRG cell bodies during the first 6 d following crush. Conditioning lesion resulted in a DRG B-50/GAP43 protein amount at the same level as in rats 14 d after the test lesion. B-50/GAP43 levels in DRG are probably influenced by the rapid axonal transport of the protein, as has been reported by others.

Report this publication

Statistics

Seen <100 times