Affordable Access

Expression of genes controlling transport and catabolism of prostaglandin E2 in lipopolysaccharide fever.

Authors
Type
Published Article
Journal
American journal of physiology. Regulatory, integrative and comparative physiology
Publication Date
Volume
284
Issue
3
Identifiers
PMID: 12399253
Source
Medline

Abstract

Prostaglandin (PG) E(2) is a principal downstream mediator of fever and other symptoms of systemic inflammation. Its inactivation occurs in peripheral tissues, primarily the lungs and liver, via carrier-mediated cellular uptake and enzymatic oxidation. We hypothesized that inactivation of PGE(2) is suppressed during LPS fever and that transcriptional downregulation of PGE(2) carriers and catabolizing enzymes contributes to this suppression. Fever was induced in inbred Wistar-Kyoto rats by intravenous LPS (50 microg/kg); the controls received saline. Samples of the liver, lungs, and hypothalamus were harvested 0, 0.5, 1.5, and 5 h postinjection. The expression of the two principal transmembrane PGE(2) carriers (PG transporter and multispecific organic anion transporter) and the two key PGE(2)-inactivating enzymes [15-hydroxy-PG dehydrogenase (15-PGDH) and carbonyl reductase] was quantified by RT-PCR. All four genes of interest were downregulated in peripheral tissues (but not the brain) during fever. Most remarkably, the expression of hepatic 15-PGDH was decreased 26-fold 5 h post-LPS, whereas expression of pulmonary 15-PGDH was downregulated (as much as 18-fold) throughout the entire febrile course. The transcriptional downregulation of several proteins involved in PGE(2) inactivation, first reported here, is an unrecognized mechanism of systemic inflammation. By increasing the blood-brain gradient of PGE(2), this mechanism likely facilitates penetration of PGE(2) into the brain and prevents its elimination from the brain.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments