Affordable Access

Expression and characterization of human bifunctional peptidylglycine alpha-amidating monooxygenase.

Authors
  • Satani, Manabu
  • Takahashi, Kenichi
  • Sakamoto, Hiroshi
  • Harada, Saori
  • Kaida, Yasuhiko
  • Noguchi, Masato
Type
Published Article
Journal
Protein expression and purification
Publication Date
Apr 01, 2003
Volume
28
Issue
2
Pages
293–302
Identifiers
PMID: 12699694
Source
Medline
License
Unknown

Abstract

We report the purification and characterization of human bifunctional peptidylglycine alpha-amidating monooxygenase (the bifunctional PAM) expressed in Chinese hamster ovary cells. PAM is in charge of the formation of the C-terminal amides of biologically active peptides. The bifunctional PAM possesses two catalytic domains in a single polypeptide, peptidylglycine alpha-hydroxylating monooxygenase (PHM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PAL, EC 4.3.2.5). By introducing a stop codon at 835 Glu, we were able to eliminate the membrane-spanning domain in the C-terminal region and succeeded in purifying a soluble form of bifunctional PAM that was secreted into the medium. Through a three-step purification procedure, we obtained 0.3mg of the purified PAM, which showed a single band at 91 kDa on SDS-PAGE, from 1L of monolayer culture medium. Metals contained in the purified PAM were analyzed and chemical modifications were performed to gain insight into the mechanism of the PAL reaction. Inductively coupled plasma detected 0.62 mol of Zn(2+) and 1.25 mol of Cu(2+) per mol of bifunctional PAM. Further, the addition of 1mM EDTA reduced the PAL activity by about 50%, but the decreased activity was recovered by the addition of an excess amount of Zn(2+). In a series of chemical modifications, phenylglyoxal almost completely eliminated the PAL activity and diethyl pyrocarbonate suppressed activity by more than 70%. These findings implied that Arg and His residues might play crucial roles during catalysis.

Report this publication

Statistics

Seen <100 times