Affordable Access

deepdyve-link
Publisher Website

Explicit rank bounds for cyclic covers

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.2140/agt.2016.16.1343
Source
arXiv
License
Yellow
External links

Abstract

Let $M$ be a closed, orientable hyperbolic 3-manifold and $\phi$ a homomorphism of its fundamental group onto $\mathbb{Z}$ that is not induced by a fibration over the circle. For each natural number $n$ we give an explicit lower bound, linear in $n$, on rank of the fundamental group of the cover of $M$ corresponding to $\phi^{-1}(n\mathbb{Z})$. The key new ingredient is the following result: for such a manifold $M$ and a connected, two-sided incompressible surface of genus $g$ in $M$ that is not a fiber or semi-fiber, a reduced homotopy in $(M,S)$ has length at most $14g-12$.

Statistics

Seen <100 times