Excited states and staggering in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varvec{\gamma } $$\end{document}-vibrational band built on the 11/2-[505]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbf {11/2^{-}[505]} $$\end{document} orbital of 165\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {^{~165}}$$\end{document}Er
- Authors
- Type
- Published Article
- Journal
- The European Physical Journal A
- Publisher
- Springer Berlin Heidelberg
- Publication Date
- Feb 05, 2022
- Volume
- 58
- Issue
- 2
- Identifiers
- DOI: 10.1140/epja/s10050-022-00675-0
- Source
- Springer Nature
- Disciplines
- License
- Yellow
Abstract
An extented Bohr Hamiltonian, by considering the Deformation-Dependent Mass Formalism with three different mass parameters one for each collective mode, is used to investigate the bands structure of the 165\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{165}$$\end{document}Er nucleus. By taking into account the Coriolis interaction, the staggering of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma $$\end{document} band energy levels built on the 11/2-[505]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 11/2^{-}[505] $$\end{document} orbital obtained within this theoretical approach has a similar behavior to that observed from experiment. E2 transition probabilities are also predicted for a future experimental test.