Affordable Access

Access to the full text

Exact Sampling of Determinantal Point Processes without Eigendecomposition

Authors
  • Launay, Claire
  • Galerne, Bruno
  • Desolneux, Agnès
Type
Published Article
Publication Date
Feb 22, 2021
Submission Date
Feb 23, 2018
Identifiers
DOI: 10.1017/jpr.2020.56
Source
arXiv
License
Yellow
External links

Abstract

Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel $K$ that can be seen as a matrix storing the similarity between points. The diversity comes from the fact that the inclusion probability of a subset is equal to the determinant of a submatrice of $K$. The exact algorithm to sample DPPs uses the spectral decomposition of $K$, a computation that becomes costly when dealing with a high number of points. Here, we present an alternative exact algorithm in the discrete setting that avoids the eigenvalues and the eigenvectors computation. Instead, it relies on Cholesky decompositions. This is a two steps strategy: first, it samples a Bernoulli point process with an appropriate distribution, then it samples the target DPP distribution through a thinning procedure. Not only is the method used here innovative, but this algorithm can be competitive with the original algorithm or even faster for some applications specified here.

Report this publication

Statistics

Seen <100 times