Affordable Access

Evolution of Arginine Biosynthesis in the Bacterial Domain: Novel Gene-Enzyme Relationships from Psychrophilic Moritella Strains (Vibrionaceae) and Evolutionary Significance of N-α-Acetyl Ornithinase

  • Ying Xu
  • Ziyuan Liang
  • Christianne Legrain
  • Hans J. Rüger
  • Nicolas Glansdorff
American Society for Microbiology
Publication Date
Mar 01, 2000
  • Biology


In the arginine biosynthetic pathway of the vast majority of prokaryotes, the formation of ornithine is catalyzed by an enzyme transferring the acetyl group of N-α-acetylornithine to glutamate (ornithine acetyltransferase [OATase]) (argJ encoded). Only two exceptions had been reported—the Enterobacteriaceae and Myxococcus xanthus (members of the γ and δ groups of the class Proteobacteria, respectively)—in which ornithine is produced from N-α-acetylornithine by a deacylase, acetylornithinase (AOase) (argE encoded). We have investigated the gene-enzyme relationship in the arginine regulons of two psychrophilic Moritella strains belonging to the Vibrionaceae, a family phylogenetically related to the Enterobacteriaceae. Most of the arg genes were found to be clustered in one continuous sequence divergently transcribed in two wings, argE and argCBFGH(A) [“H(A)” indicates that the argininosuccinase gene consists of a part homologous to known argH sequences and of a 3′ extension able to complement an Escherichia coli mutant deficient in the argA gene, encoding N-α-acetylglutamate synthetase, the first enzyme committed to the pathway]. Phylogenetic evidence suggests that this new clustering pattern arose in an ancestor common to Vibrionaceae and Enterobacteriaceae, where OATase was lost and replaced by a deacylase. The AOase and ornithine carbamoyltransferase of these psychrophilic strains both display distinctly cold-adapted activity profiles, providing the first cold-active examples of such enzymes.


Seen <100 times