Affordable Access

Evolution of deposited carbon during multi-stage fluidized-bed reduction of iron ore fines

Authors
  • Du, Zhan
  • Zhu, Qingshan
  • Pan, Feng
  • Zou, Zheng
  • Xie, Zhaohui
  • Li, Hongzhong
Publication Date
Dec 01, 2018
Source
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
Keywords
License
Unknown
External links

Abstract

The influence of reduction conditions on carbon deposition during fluidized-bed pre-reduction of iron ore fines was investigated experimentally. The results showed that reduction temperature and the composition of reducing gases had a significant effect on the rate of carbon deposition and the type of carbon deposits (graphite and Fe3C). Low reduction temperature, high CO content, and addition of H-2 favored the deposition of carbon, especially graphite. The reduction conditions also significantly affected the surface morphology of the as-reduced iron ore fines. As the amount of deposited graphite increased, the formation of fibrous iron disappeared and graphite filaments were observed. The pre-reduced iron ore fines were further fluidized in pure CO at 850 degrees C for final reduction. The results showed that graphite could suppress the formation of fibrous iron and decrease the surface viscosity, thereby inhibiting agglomeration during the final high-temperature reduction stage. Reactions that consume the deposited carbon during the final high-temperature reduction were identified and graphite was shown to be more reactive than Fe3C. To enhance the application of fluidization technology in producing sponge iron, a novel solid-state high-temperature reduction method via deposited carbon was proposed and demonstrated to be feasible. (C) 2018 Published by Elsevier B.V. on behalf of Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences.

Report this publication

Statistics

Seen <100 times