Affordable Access

Evaluation of the xenobiotic biotransformation capability of six rodent hepatoma cell lines in comparison with rat hepatocytes.

Authors
Type
Published Article
Journal
In vitro cellular & developmental biology. Animal
Publication Date
Volume
30A
Issue
9
Pages
574–580
Identifiers
PMID: 7820307
Source
Medline
License
Unknown

Abstract

Phase I and II activities were examined in six rodent hepatoma cell lines and compared with those of cultured rat hepatocytes both in basal conditions and after exposure to 5 microM methylcholanthrene, 2 mM phenobarbital, and 15 microM beta-naphtoflavone. The metabolic profile of testosterone was also studied. The highest aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase activities were found in MH1C1 cells. Comparable values for 7-ethoxyresorufin O-deethylase activity, ranging from 21.6 to 42.9 pmol/mg x min, were observed in the hepatocytes and hepatoma cells, except the HTC cells. In contrast, only Fao cells showed 7-pentoxyresorufin O-depentylase activity at levels similar to those of hepatocytes (6.2 +/- 1.0 and 7.4 +/- 1.2 pmol/mg x min, respectively). Rat hepatocytes actively hydroxylated p-nitrophenol, but this activity was not measurable in hepatoma cells. Glutathione transferase activity was maintained in all the hepatoma cell lines at similar levels to those found in hepatocytes (684 +/- 56 nmol/mg x min). The seven hydroxylated metabolites of testosterone produced by cultured hepatocytes were negligible in hepatoma cells. Exposure of cells to inducers revealed that aryl hydrocarbon hydroxylase activity was mainly increased after treatment with 3-methylcholanthrene and beta-naphtoflavone, and the highest values were found in rat hepatocytes followed by MH1C1 and Fao cells. 3-Methylcholanthrene and naphtoflavone treatment also resulted in a marked increase in 7-ethoxyresorufin O-deethylase activity in hepatocytes as well as in H4IIC3, McA-Rh7777, MH1C1, and Fao cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Statistics

Seen <100 times