Affordable Access

Evaluating the quality of Scientific Visualizations: The Q-VIS Reference Model

Authors
  • Haase, H.
Publication Date
Jan 01, 1998
Source
Fraunhofer-ePrints
Keywords
Language
English
License
Unknown
External links

Abstract

Scientific Visualizations are important to scientists and engineers in many fields, but also to managers and to the general public. In order to achieve good results there have to be means to evaluate the quality of visualizations and to compare visualizations to each other. In this paper, after a short introduction and an overview of some related work, the notion of a "visualization background" is introduced. It includes the prior knowledge of the user, the aims of the user, the application domain, amount, structure, and distribution of the data, and teh available hardware and software. next, the problem of quantifiying visualization quality is discussed. Then, six subqualities are presented, namely data resolution quality, semantic quality, mapping quality, image quality, presentation and interaction quality, and user quality. The reference model defines visualiyation quality as six pairs of two values each: for each of the six subqualities, a weight value C (representing the importan ce of the subquality for the visualization background) and a subquality value Q (a measure of how well the visulization meets the requirements of the visualization background in this subquality) are given. Finally, the Q-VIS graph is introduced which offers a compact, easy to perceive representation of this visulization quality. Thus, a tool for evaluating and comparing visualizations and visualization systems is presented which can help to achieve better visualizations in the future.

Report this publication

Statistics

Seen <100 times