Affordable Access

Evaluating and Improving the Reasoning Abilities of Language Models

Authors
  • Helwe, Chadi
Publication Date
Jul 05, 2024
Source
Hal-Diderot
Keywords
Language
English
License
Unknown
External links

Abstract

This thesis focuses on evaluating and improving the reasoning abilities of Smaller Language Models (SLMs) and Large Language Models (LLMs). It explores SLMs’ performance on complex tasks and their limitations with simpler ones. This thesis introduces LogiTorch, a Python library that facilitates the training of models on various reasoning tasks with minimal coding.It also presents TINA, a negated data augmentation technique that improves SLMs’ robustness to Negation in textual entailment tasks. Further, this thesis explores LLMs’ capabilities through MAFALDA, a new benchmark for identifying and classifying reasoning fallacies, proposing a new annotation scheme and evaluation metric that considers subjectivity in reasoning. The findings indicate that humans outperform SLMs and LLMs in this reasoning task. We propose several research directions that merit further investigation, such as investigating Neuro-symbolic AI and improving the reasoning abilities of low-resource LLMs.

Report this publication

Statistics

Seen <100 times