Affordable Access

Access to the full text

Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation

Authors
  • Sae-Lim, Panya1
  • Kause, Antti2
  • Lillehammer, Marie1
  • Mulder, Han A.3
  • 1 Nofima Ås, Osloveien 1, Ås, 1431, Norway , Ås (Norway)
  • 2 Natural Resources Institute Finland, Biometrical Genetics, Jokioinen, 31600, Finland , Jokioinen (Finland)
  • 3 Wageningen University and Research, Animal Breeding and Genomics Centre, Wageningen, 6700 AH, The Netherlands , Wageningen (Netherlands)
Type
Published Article
Journal
Genetics Selection Evolution
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Mar 07, 2017
Volume
49
Issue
1
Identifiers
DOI: 10.1186/s12711-017-0308-3
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundIn farmed Atlantic salmon, heritability for uniformity of body weight is low, indicating that the accuracy of estimated breeding values (EBV) may be low. The use of genomic information could be one way to increase accuracy and, hence, obtain greater response to selection. Genomic information can be merged with pedigree information to construct a combined relationship matrix (H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{H}}$$\end{document} matrix) for a single-step genomic evaluation (ssGBLUP), allowing realized relationships of the genotyped animals to be exploited, in addition to numerator pedigree relationships (A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{A}}$$\end{document} matrix). We compared the predictive ability of EBV for uniformity of body weight in Atlantic salmon, when implementing either the A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{A}}$$\end{document} or H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{H}}$$\end{document} matrix in the genetic evaluation. We used double hierarchical generalized linear models (DHGLM) based either on a sire-dam (sire-dam DHGLM) or an animal model (animal DHGLM) for both body weight and its uniformity.ResultsWith the animal DHGLM, the use of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{H}}$$\end{document} instead of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{A}}$$\end{document} significantly increased the correlation between the predicted EBV and adjusted phenotypes, which is a measure of predictive ability, for both body weight and its uniformity (41.1 to 78.1%). When log-transformed body weights were used to account for a scale effect, the use of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{H}}$$\end{document} instead of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{A}}$$\end{document} produced a small and non-significant increase (1.3 to 13.9%) in predictive ability. The sire-dam DHGLM had lower predictive ability for uniformity compared to the animal DHGLM.ConclusionsUse of the combined numerator and genomic relationship matrix (H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{H}}$$\end{document}) significantly increased the predictive ability of EBV for uniformity when using the animal DHGLM for untransformed body weight. The increase was only minor when using log-transformed body weights, which may be due to the lower heritability of scaled uniformity, the lower genetic correlation of transformed body weight with its uniformity compared to the untransformed traits, and the small number of genotyped animals in the reference population. This study shows that ssGBLUP increases the accuracy of EBV for uniformity of body weight and is expected to increase response to selection in uniformity.

Report this publication

Statistics

Seen <100 times