Affordable Access

deepdyve-link deepdyve-link
Publisher Website

ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers.

Authors
Type
Published Article
Journal
AJP Gastrointestinal and Liver Physiology
1522-1547
Publisher
American Physiological Society
Publication Date
Volume
301
Issue
1
Identifiers
DOI: 10.1152/ajpgi.00494.2010
PMID: 21474650
Source
Medline
License
Unknown

Abstract

The role of mitogen-activated protein kinases (MAPK) in the mechanism of EGF-mediated prevention of acetaldehyde-induced tight junction disruption was evaluated in Caco-2 cell monolayers. Pretreatment of cell monolayers with EGF attenuated acetaldehyde-induced decrease in resistance and increase in inulin permeability and redistribution of occludin, zona occludens-1 (ZO-1), E-cadherin, and β-catenin from the intercellular junctions. EGF rapidly increased the levels of phospho-ERK1/2, phospho-p38 MAPK, and phospho-JNK1. Pretreatment of cell monolayers with U-0126 (inhibitor of ERK activation), but not SB-202190 and SP-600125 (p38 MAPK and JNK inhibitors), significantly attenuated EGF-mediated prevention of acetaldehyde-induced changes in resistance, inulin permeability, and redistribution of occludin and ZO-1. U-0126, but not SB-202190 and SP-600125, also attenuated EGF-mediated prevention of acetaldehyde effect on the midregion F-actin ring. However, EGF-mediated preservation of junctional distribution of E-cadherin and β-catenin was unaffected by all three inhibitors. Expression of wild-type or constitutively active MEK1 attenuated acetaldehyde-induced redistribution of occludin and ZO-1, whereas dominant-negative MEK1 prevented EGF-mediated preservation of occludin and ZO-1 in acetaldehyde-treated cells. MEK1 expression did not alter E-cadherin distribution in acetaldehyde-treated cells in the presence or absence of EGF. Furthermore, EGF attenuated acetaldehyde-induced tyrosine-phosphorylation of occludin, ZO-1, claudin-3, and E-cadherin. U-0126, but not SB-202190 and SP-600125, prevented EGF effect on tyrosine-phosphorylation of occludin and ZO-1, but not claudin-3, E-cadherin, or β-catenin. These results indicate that EGF-mediated protection of tight junctions from acetaldehyde requires the activity of ERK1/2, but not p38 MAPK or JNK1/2, and that EGF-mediated protection of adherens junctions is independent of MAPK activities.

Statistics

Seen <100 times