Affordable Access

Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.

  • Ahlers, Jan
  • Regelmann, Jürgen
  • Riedhammer, Caroline
Published Article
Publication Date
Jul 01, 2003
PMID: 12738278


In environmental risk assessments the question has to be answered, whether risk reduction measures are necessary in order to protect the environment. If the combination of natural and anthropogenic sources of a chemical substance leads to an unacceptable risk, the man-made emissions have to be reduced. In this case the proportions of the anthropogenic and natural emissions have to be quantified. Difficulties and possible solutions are discussed in the scope of the OECD- and EU-risk assessments of trichloroacetic acid (TCA) and tetrachloroethylene. In the atmosphere, TCA is formed by photo-oxidative degradation of tetrachloroethylene (PER) and 1,1,1-trichloroethane. The available data on atmospheric chemistry indicate that tetrachloroethylene is the more important pre-cursor. With its high water solubility and low volatility, TCA is adsorbed onto aerosol particles and precipitated during rainfalls. Extended monitoring in rainwater confirmed the global distribution of airborne TCA. TCA reaches soils by dry and wet deposition. In addition formation of TCA from tetrachloroethylene in plants was observed. Consequently, high concentrations were detected in needles, leaves and in forest soil especially in mountain regions. The effect assessment revealed that plants exposed via soil are the most sensitive species compared to other terrestrial organisms. A PNECsoil of 2.4 microg/kg dw was derived from a long-term study with pine and spruce seedlings. When this PNEC is compared with the measured concentrations of TCA in soil, in certain regions a PEC/PNEC ratio >1 is obtained. This clearly indicates a risk to the terrestrial ecosystem, with the consequence that risk reduction measures are deemed necessary. To quantify the causes of the high levels of TCA in certain soils, and to investigate the geographical extent of the problem, intensive and widespread monitoring of soil, air and rainwater for TCA and tetrachloroethylene would be necessary to be able to perform a full mass balance study at an appropriate number of sites. In addition, measurements of the 14C content in TCA isolated from soil could clarify whether a significant proportion of the TCA occurs from natural sources. The possible formation of TCA in soil can also be tested by incubation of isotope enriched inorganic chloride with subsequent mass spectrometry of TCA.

Report this publication


Seen <100 times