Environmental Regulation and Virulence Attributes of the Ysa Type III Secretion System of Yersinia enterocolitica Biovar 1B

Affordable Access

Environmental Regulation and Virulence Attributes of the Ysa Type III Secretion System of Yersinia enterocolitica Biovar 1B

Publisher
American Society for Microbiology
Publication Date
Sep 01, 2005
Source
PMC
Keywords
Disciplines
  • Ecology
  • Geography
License
Unknown

Abstract

Pathogenic biovars of Yersinia enterocolitica maintain the well-studied plasmid-encoded Ysc type III secretion (TTS) system, which has a definitive role in virulence. Y. enterocolitica biovar 1B additionally has a distinct chromosomal locus, the Yersinia secretion apparatus pathogenicity island (YSA PI) that encodes the Ysa TTS system. The signals to which the Ysa TTS system responds and its role in virulence remain obscure. This exploratory study was conducted to define environmental cues that promote the expression of Ysa TTS genes and to define how the Ysa TTS system influences bacterium-host interactions. Using a genetic approach, a collection of Y. enterocolitica Ysa TTS mutants was generated by mutagenesis with a transposon carrying promoterless lacZYA. This approach identified genes both within and outside of the YSA PI that contribute to Ysa TTS. Expression of these genes was regulated in response to growth phase, temperature, NaCl, and pH. Additional genetic analysis demonstrated that two regulatory genes encoding components of the YsrR-YsrS (ysrS) and RcsC-YojN-RcsB (rcsB) phosphorelay systems affect the expression of YSA PI genes and each other. The collection of Ysa TTS-defective transposon mutants, along with other strains carrying defined mutations that block Ysa and Ysc TTS, was examined for changes in virulence properties by using the BALB/c mouse model of infection. This analysis revealed that the Ysa TTS system impacts the ability of Y. enterocolitica to colonize gastrointestinal tissues. These results reveal facets of how Y. enterocolitica controls the function of the Ysa TTS system and uncovers a role for the Ysa TTS during the gastrointestinal phase of infection.

Report this publication

Statistics

Seen <100 times