Affordable Access

Publisher Website

Enhancing pseudocapacitive intercalation in Ti3C2T x MXene with molecular crowding electrolytes

Authors
  • Chen, Chaofan
  • de Kogel, Albert
  • Weijers, Mark
  • Bannenberg, Lars J
  • Wang, Xuehang
Type
Published Article
Journal
2D Materials
Publisher
IOP Publishing
Publication Date
Oct 12, 2023
Volume
11
Issue
1
Identifiers
DOI: 10.1088/2053-1583/acff08
Source
ioppublishing
Keywords
License
Unknown

Abstract

The growing demand for safe, cost-efficient, high-energy and high-power electrochemical energy storage devices has stimulated the development of aqueous-based supercapacitors with high capacitance, high rate capability, and high voltage. 2D titanium carbide MXene-based electrodes have shown excellent rate capability in various dilute aqueous electrolytes, yet their potential window is usually narrower than 1.2 V. In this study, we show that the potential window of Ti3C2T x MXene can be efficiently widened to 1.5 V in a cost-effective and environmentally benign polyethylene glycol (PEG) containing molecular crowding electrolyte. Additionally, a pair of redox peaks at −0.25 V/−0.05 V vs. Ag (cathodic/anodic) emerged in cyclic voltammetry after the addition of PEG, yielding an additional 25% capacitance. Interestingly, we observed the co-insertion of the molecular crowding agent PEG-400 during the Li+ intercalation process based on in-situ x-ray diffraction analysis. As a result, Ti3C2T x electrodes presented an interlayer space change of 4.7 Å during a complete charge/discharge cycle, which is the largest reversible interlayer space change reported so far for MXene-based electrodes. This work demonstrates the potential of adding molecular crowding agents to improve the performance of MXene electrodes in aqueous electrolytes and to enlarge the change of the interlayer spacing.

Report this publication

Statistics

Seen <100 times