Affordable Access

deepdyve-link
Publisher Website

Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold-Photoactive Polymer Nanoparticles.

Authors
  • Keyvan Rad, Jaber1
  • Mahdavian, Ali Reza1
  • Khoei, Samideh2
  • Shirvalilou, Sakine2
  • 1 Polymer Science Department , Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115 , Iran. , (Iran)
  • 2 Medical Physics Department, School of Medicine , Iran University of Medical Sciences , Tehran 1449614525 , Iran. , (Iran)
Type
Published Article
Journal
ACS Applied Materials & Interfaces
Publisher
American Chemical Society
Publication Date
Jun 13, 2018
Volume
10
Issue
23
Pages
19483–19493
Identifiers
DOI: 10.1021/acsami.8b05252
PMID: 29787247
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Tumor-selective photodynamic therapy is a successful method for ablation of malignant and cancerous cells. Herein, we introduce the design and preparation of functionalized acrylic copolymer nanoparticles with spiropyran (SP) and imidazole groups through a facile semicontinuous emulsion polymerization. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles (PGPNPs). The prepared PGPNPs were surface-modified with folic acid as a site-specific tumor cell targeting agent and improve intracellular uptake via endocytosis. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy analyses, UV-vis spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy images were employed to characterize their spectral and morphological properties. Fluorescence microscopy images and inductively coupled plasma analysis demonstrated the cell line labeling capability and improved targeting efficiency of folate-conjugated PGPNPs (FA-PGPNPs) toward rat brain cancer cells (C6 glioma) with 71.8% cell uptake in comparison with 28.8% for the nonconjugated ones. Nonpolar SP groups are converted to zwitterionic merocyanine isomers under UV irradiation at 365 nm and their conjugation with Au nanoparticles exhibited enhanced photogeneration of reactive oxygen species (ROS). These were confirmed by intracellular ROS analysis and cytotoxicity evaluation on malignant C6 glioma cells. Owing to the strong surface plasmon resonance absorption of gold nanoparticles, FA-PGPNPs provided elevated local photothermal efficiency under near-IR irradiation at 808 nm. The prepared multifunctional FA-PGPNPs with a comprehensive integration of prospective materials introduced promising nanoprobes with targeting ability, enhanced tumor photodynamic therapy, cell tracking, and photothermal therapy.

Report this publication

Statistics

Seen <100 times