Affordable Access

Access to the full text

Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock

Authors
  • Allacker, Karen1
  • Castellani, Valentina2
  • Baldinelli, Giorgio3
  • Bianchi, Francesco3
  • Baldassarri, Catia2
  • Sala, Serenella2
  • 1 KU Leuven, Faculty of Engineering Science, Department of Architecture, Kasteelpark Arenberg 1, Leuven, 3001, Belgium , Leuven (Belgium)
  • 2 Directorate D - Sustainable Resources - Bio-Economy Unit, European Commission Joint Research Centre, Via Enrico Fermi 2749 TP290, Ispra, 21027, Italy , Ispra (Italy)
  • 3 Department of Engineering, University of Perugia, Via Duranti 67, Perugia, 06125, Italy , Perugia (Italy)
Type
Published Article
Journal
The International Journal of Life Cycle Assessment
Publisher
Springer Berlin Heidelberg
Publication Date
Dec 14, 2018
Volume
24
Issue
6
Pages
989–1008
Identifiers
DOI: 10.1007/s11367-018-1548-3
Source
Springer Nature
Keywords
License
Green

Abstract

PurposeEnergy consumption of buildings is one of the major drivers of environmental impacts. Life cycle assessment (LCA) may support the assessment of burdens and benefits associated to eco-innovations aiming at reducing these environmental impacts. Energy efficiency policies however typically focus on the meso- or macro-scale, while interventions are typically taken at the micro-scale. This paper presents an approach that bridges this gap by using the results of energy simulations and LCA studies at the building level to estimate the effect of micro-scale eco-innovations on the macro-scale, i.e. the housing stock in Europe.MethodsLCA and dynamic energy simulations are integrated to accurately assess the life cycle environmental burdens and benefits of eco-innovation measures at the building level. This allows quantitatively assessing the effectiveness of these measures to lower the energy use and environmental impact of buildings. The analysis at this micro-scale focuses on 24 representative residential buildings within the EU. For the upscaling to the EU housing stock, a hybrid approach is used. The results of the micro-scale analysis are upscaled to the EU housing stock scale by adopting the eco-innovation measures to (part of) the EU building stock (bottom–up approach) and extrapolating the relative impact reduction obtained for the reference buildings to the baseline stock model. The reference buildings in the baseline stock model have been developed by European Commission-Joint Research Centre based on a statistical analysis (top–down approach) of the European housing stock. The method is used to evaluate five scenarios covering various aspects: building components (building envelope insulation), technical installations (renewable energy), user behaviour (night setback of the setpoint temperature), and a combined scenario.Results and discussionResults show that the proposed combination of bottom–up and top–down approaches allow accurately assessing the impact of eco-innovation measures at the macro-scale. The results indicate that a combination of policy measures is necessary to lower the environmental impacts of the building stock to a significative extent.ConclusionsInterventions addressing energy efficiency at building level may lead to the need of a trade-off between resource efficiency and environmental impacts. LCA integrated with dynamic energy simulation may help unveiling the potential improvements and burdens associated to eco-innovations.

Report this publication

Statistics

Seen <100 times