Affordable Access

Decoupling Gasification: Approach Principle and Technology Justification / Energy Fuels

Authors
  • Zhang, Juwei
  • Wang, Yin
  • Dong, Li
  • Gao, Shiqiu
  • Xu, Guangwen
Publication Date
Dec 01, 2010
Source
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
Keywords
License
Unknown
External links

Abstract

Explicitly, the fuel gasification process refers to a reaction converting a solid fuel into gaseous products, but intrinsically, it involves a series of reactions, including fuel pyrolysis, char gasification, tar reforming/cracking, combustible matter combustion, etc. All of these reactions are mutually interactive and fully coupled in a single gasification reactor (i.e., gasifier) for the major commercial gasification technologies. The decoupling gasification (DCG) mentioned in this paper is based on separating and, in turn, reorganizing at least one of the involved reactions to facilitate or suppress the interactive effects between the separated and other reactions. From this decoupling approach, there is potential to allow for the resulting gasification technology to realize the effects of polygeneration, low emission, high efficiency, good product quality, and wide fuel adaptability. This paper generalizes the decoupling approach into two types: isolating and synergizing. Through correlating technical features with these decoupling approaches, re-analysis of the technology principles is made for a few newly developed gasification technologies based on decoupling of the involved gasification reactions. The typical results obtained in research and development of these technologies at bench or pilot scales were recalled to justify the implicated decoupling principle and consequent benefits. As a consequence, the paper concludes that the decoupling of reactions provides a prospective approach to innovate technologies that enable high-efficiency clean conversion of solid fuels into high-quality products. / Explicitly, the fuel gasification process refers to a reaction converting a solid fuel into gaseous products, but intrinsically, it involves a series of reactions, including fuel pyrolysis, char gasification, tar reforming/cracking, combustible matter combustion, etc. All of these reactions are mutually interactive and fully coupled in a single gasification reactor (i.e., gasifier) for the major commercial gasification technologies. The decoupling gasification (DCG) mentioned in this paper is based on separating and, in turn, reorganizing at least one of the involved reactions to facilitate or suppress the interactive effects between the separated and other reactions. From this decoupling approach, there is potential to allow for the resulting gasification technology to realize the effects of polygeneration, low emission, high efficiency, good product quality, and wide fuel adaptability. This paper generalizes the decoupling approach into two types: isolating and synergizing. Through correlating technical features with these decoupling approaches, re-analysis of the technology principles is made for a few newly developed gasification technologies based on decoupling of the involved gasification reactions. The typical results obtained in research and development of these technologies at bench or pilot scales were recalled to justify the implicated decoupling principle and consequent benefits. As a consequence, the paper concludes that the decoupling of reactions provides a prospective approach to innovate technologies that enable high-efficiency clean conversion of solid fuels into high-quality products.

Report this publication

Statistics

Seen <100 times