Affordable Access

Access to the full text

Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer’s and Parkinson’s disease

Authors
  • Sjödin, Simon
  • Brinkmalm, Gunnar
  • Öhrfelt, Annika
  • Parnetti, Lucilla
  • Paciotti, Silvia
  • Hansson, Oskar
  • Hardy, John
  • Blennow, Kaj
  • Zetterberg, Henrik
  • Brinkmalm, Ann
Type
Published Article
Journal
Alzheimer's Research & Therapy
Publisher
BioMed Central
Publication Date
Sep 14, 2019
Volume
11
Issue
1
Identifiers
DOI: 10.1186/s13195-019-0533-9
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundIncreasing evidence implicates dysfunctional proteostasis and the involvement of the autophagic and endo-lysosomal system and the ubiquitin-proteasome system in neurodegenerative diseases. In Alzheimer’s disease (AD), there is an accumulation of autophagic vacuoles within the neurons. In Parkinson’s disease (PD), susceptibility has been linked to genes encoding proteins involved in autophagy and lysosomal function, as well as mutations causing lysosomal disorders. Furthermore, both diseases are characterized by the accumulation of protein aggregates.MethodsProteins associated with endocytosis, lysosomal function, and the ubiquitin-proteasome system were identified in the cerebrospinal fluid (CSF) and targeted by combining solid-phase extraction and parallel reaction monitoring mass spectrometry. In total, 50 peptides from 18 proteins were quantified in three cross-sectional cohorts including AD (N = 61), PD (N = 21), prodromal AD (N = 10), stable mild cognitive impairment (N = 15), and controls (N = 68).ResultsA pilot study, including subjects selected based on their AD CSF core biomarker concentrations, showed increased concentrations of several targeted proteins in subjects with core biomarker levels indicating AD pathology compared to controls. Next, in a clinically characterized cohort, lower concentrations in CSF of proteins in PD were found compared to subjects with prodromal AD. Further investigation in an additional clinical study again revealed lower concentrations in CSF of proteins in PD compared to controls and AD.ConclusionIn summary, significantly different peptide CSF concentrations were identified from proteins AP2B1, C9, CTSB, CTSF, GM2A, LAMP1, LAMP2, TCN2, and ubiquitin. Proteins found to have altered concentrations in more than one study were AP2B1, CTSB, CTSF, GM2A, LAMP2, and ubiquitin. Interestingly, given the genetic implication of lysosomal function in PD, we did identify the CSF concentrations of CTSB, CTSF, GM2A, and LAMP2 to be altered. However, we also found differences in proteins associated with endocytosis (AP2B1) and the ubiquitin-proteasome system (ubiquitin). No difference in any peptide CSF concentration was found in clinically characterized subjects with AD compared to controls. In conclusion, CSF analyses of subjects with PD suggest a general lysosomal dysfunction, which resonates well with recent genetic findings, while such changes are minor or absent in AD.

Report this publication

Statistics

Seen <100 times