Affordable Access

Access to the full text

An empirical Bayes testing procedure for detecting variants in analysis of next generation sequencing data

Authors
  • Zhao, Zhigen
  • Wang, Wei
  • Wei, Zhi
Type
Published Article
Publication Date
Jan 10, 2014
Submission Date
Jan 10, 2014
Identifiers
DOI: 10.1214/13-AOAS660
Source
arXiv
License
Yellow
External links

Abstract

Because of the decreasing cost and high digital resolution, next-generation sequencing (NGS) is expected to replace the traditional hybridization-based microarray technology. For genetics study, the first-step analysis of NGS data is often to identify genomic variants among sequenced samples. Several statistical models and tests have been developed for variant calling in NGS study. The existing approaches, however, are based on either conventional Bayesian or frequentist methods, which are unable to address the multiplicity and testing efficiency issues simultaneously. In this paper, we derive an optimal empirical Bayes testing procedure to detect variants for NGS study. We utilize the empirical Bayes technique to exploit the across-site information among many testing sites in NGS data. We prove that our testing procedure is valid and optimal in the sense of rejecting the maximum number of nonnulls while the Bayesian false discovery rate is controlled at a given nominal level. We show by both simulation studies and real data analysis that our testing efficiency can be greatly enhanced over the existing frequentist approaches that fail to pool and utilize information across the multiple testing sites.

Report this publication

Statistics

Seen <100 times