Affordable Access

Emerging understanding of the ΔI=1/2 rule from lattice QCD.

Authors
  • Boyle, P A
  • Christ, N H
  • Garron, N
  • Goode, E J
  • Janowski, T
  • Lehner, C
  • Liu, Q
  • Lytle, A T
  • Sachrajda, C T
  • Soni, A
  • Zhang, D
Type
Published Article
Journal
Physical Review Letters
Publisher
American Physical Society
Publication Date
Apr 12, 2013
Volume
110
Issue
15
Pages
152001–152001
Identifiers
PMID: 25167252
Source
Medline
License
Unknown

Abstract

There has been much speculation as to the origin of the ΔI=1/2 rule (ReA0/ReA2≃22.5). We find that the two dominant contributions to the ΔI=3/2, K→ππ correlation functions have opposite signs, leading to a significant cancelation. This partial cancelation occurs in our computation of ReA2 with physical quark masses and kinematics (where we reproduce the experimental value of A2) and also for heavier pions at threshold. For ReA0, although we do not have results at physical kinematics, we do have results for pions at zero momentum with mπ≃420  MeV [ReA0/ReA2=9.1(2.1)] and mπ≃330  MeV [ReA0/ReA2=12.0(1.7)]. The contributions which partially cancel in ReA2 are also the largest ones in ReA0, but now they have the same sign and so enhance this amplitude. The emerging explanation of the ΔI=1/2 rule is a combination of the perturbative running to scales of O(2  GeV), a relative suppression of ReA2 through the cancelation of the two dominant contributions, and the corresponding enhancement of ReA0. QCD and electroweak penguin operators make only very small contributions at such scales.

Report this publication

Statistics

Seen <100 times