Affordable Access

deepdyve-link
Publisher Website

Emerging Role of Elastin-Like Polypeptides in Regenerative Medicine.

Authors
  • Sarangthem, Vijaya1
  • Singh, Thoudam Debraj2
  • Dinda, Amit Kumar1
  • 1 Department of Pathology and All India Institute of Medical Sciences, New Delhi, India. , (India)
  • 2 Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India. , (India)
Type
Published Article
Journal
Advances in wound care
Publication Date
May 01, 2021
Volume
10
Issue
5
Pages
257–269
Identifiers
DOI: 10.1089/wound.2019.1085
PMID: 32602815
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Significance: Wound dressing based on naturally derived polymer provides a useful platform for treatment of skin injuries. Owing to the high mechanical strength and tunable structural and physicochemical properties of human elastin-like polypeptides (ELPs), they may be used as excellent materials for fabricating biocompatible scaffolds and other products for wound management. Recent Advances: Designing recombinant ELPs mimicking natural elastin to fabricate synthetic polymers suitable for human health care has generated significant interest. ELP-based cell-adhesive biopolymers have been used as an alternative for successful sutureless wound closure due to the physicochemical characteristics of the extracellular matrix. Critical Issues: Different systems of ELPs are being developed in the form of scaffolds, films, hydrogels, photo-linkable sheets, and composites linked with various types of growth factors for wound healing application. However, optimizing the quality and safety attributes for specific application needs designing of recombinant ELPs with structural and functional modifications as needed for the intervention. Future Direction: Chronic wounds are difficult to treat as the wound repair process is interrupted by conditions such as excessive inflammation, impaired extracellular matrix formation, and persistent infections. Conventional therapies such as skin substitutes or autologous skin grafts, in many cases, are unable to reestablish tissue homeostasis and proper healing. The development of innovative materials could induce a better regenerative healing response. In this study, we are reviewing different types of elastin-based materials for wound care application and their future prospects in regenerative medicine.

Report this publication

Statistics

Seen <100 times