Affordable Access

Access to the full text

Emergence of novel methicillin-resistant Staphylococcus aureus strains in a tertiary care facility in Riyadh, Saudi Arabia

  • Senok, Abiola1
  • Somily, Ali M2
  • Nassar, Rania1
  • Garaween, Ghada3
  • Kim Sing, Garwin3
  • Müller, Elke4, 5
  • Reissig, Annett4, 5
  • Gawlik, Darius6
  • Ehricht, Ralf4, 5
  • Monecke, Stefan4, 5, 7
  • 1 Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai , (United Arab Emirates)
  • 2 Department of Pathology and Laboratory Medicine, College of Medicine, King Khalid University Hospital and King Saud University, Riyadh , (Saudi Arabia)
  • 3 Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh , (Saudi Arabia)
  • 4 InfectoGnostics Research Campus Jena, Jena , (Germany)
  • 5 Leibniz Institute of Photonic Technology (IPHT), Jena , (Germany)
  • 6 PTC - Phage Technology Center GmbH, Bönen , (Germany)
  • 7 Medical Faculty “Carl Gustav Carus”, Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden , (Germany)
Published Article
Infection and Drug Resistance
Dove Medical Press
Publication Date
Sep 03, 2019
DOI: 10.2147/IDR.S218870
PMID: 31564924
PMCID: PMC6731981
PubMed Central


Purpose There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCC mec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCC fusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.

Report this publication


Seen <100 times