Affordable Access

Publisher Website

Electron small polarons and bipolarons in LiNbO(3).

  • Schirmer, O F
  • Imlau, M
  • Merschjann, C
  • Schoke, B
Published Article
Journal of physics. Condensed matter : an Institute of Physics journal
Publication Date
Mar 25, 2009
DOI: 10.1088/0953-8984/21/12/123201
PMID: 21817442


An overview of the properties of electron small polarons and bipolarons is given, which can occur in the congruently melting composition of LiNbO(3) (LN). Such polarons influence the performance of this important optical material decisively. Since coupling to the lattice strongly quenches the tunnelling of free small polarons in general, they are easily localized at one site even by weak irregularities of a crystal. The mechanism of their optical absorptions is thus shared with those of small polarons localized by binding to selected defects. It is shown that the optical properties of free electrons in LN as well as those bound to Nb(Li) antisite defects can be attributed consistently to small polarons. This is extended to electron pairs forming bipolarons bound to Nb(Li)-Nb(Nb) nearest neighbours in the LN ground state. On the basis of an elementary phenomenological approach, relying on familiar concepts of defect physics, the peak energies, lineshapes, widths of the related optical absorption bands as well as the defect binding energies induced by lattice distortion are analysed. A criterion universally identifying small polaron absorption bands in oxide materials is pointed out. For the bipolarons, the dissociation energy, 0.27 eV, derived from a corresponding study of the mass action behaviour, is shown to be consistent with the data on isolated polarons. Based on experience with simple O(-) hole small polaron systems, a mechanism is proposed which explains why the observed small polaron optical absorptions are higher above the peak energies of the bands than those predicted by the conventional theory. The parameters characterizing the optical absorptions are seen to be fully consistent with those determining the electrical conductivity, i.e. the bipolaron dissociation energy and the positions of the defect levels as well as the activation energy of mobility. A reinterpretation of previous thermopower data of reduced LN on the basis of the bipolaron model confirms that the mobility of the free polarons is activated by 0.27 eV. On the basis of the level scheme of the bipolarons as well as the bound and free polarons the temperature dependence of the electronic conductivity is explained. The polaron/bipolaron concept also allows us to account for the concentrations of the various polaron species under the combined influence of illumination and heating. The decay of free and bound polarons dissociated from bipolarons by intense short laser pulses of 532 nm light is put in the present context. A critical review of alternative models, being proposed to explain the mentioned absorption features, is given. These proposals include: single free polarons in the (diamagnetic) LN ground state, oxygen vacancies in their various conceivable charge states, quadpolarons, etc. It is shown why these models cannot explain the experimental findings consistently.

Report this publication


Seen <100 times