Affordable Access

Access to the full text

Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

Authors
  • Chang, Wen-Yang1
  • Fang, Te-Hua2
  • Tsai, Ju-Hsuan3
  • 1 National Formosa University, Department of Mechanical and Computer-Aided Engineering, Yunlin, 632, Taiwan , Yunlin (Taiwan)
  • 2 National Kaohsiung University of Applied Sciences, Department of Mechanical Engineering, 415 Chien Kung Road, Sanmin District, Kaohsiung, 807, Taiwan , Kaohsiung (Taiwan)
  • 3 National Formosa University, Institute of Electro-Optical and Materials Science, Yunlin, 632, Taiwan , Yunlin (Taiwan)
Type
Published Article
Journal
Journal of Low Temperature Physics
Publisher
Springer US
Publication Date
Nov 04, 2014
Volume
178
Issue
3-4
Pages
174–187
Identifiers
DOI: 10.1007/s10909-014-1249-7
Source
Springer Nature
Keywords
License
Yellow

Abstract

A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}A, 1.35 mV, and 1.026 nW/mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

Report this publication

Statistics

Seen <100 times