Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber.

Authors
Type
Published Article
Journal
Optics Express
1094-4087
Publisher
The Optical Society
Publication Date
Volume
19
Issue
24
Pages
24687–24698
Identifiers
DOI: 10.1364/OE.19.024687
PMID: 22109496
Source
Medline
License
Unknown

Abstract

A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.

Statistics

Seen <100 times