Affordable Access

Efficiency of thermoregulatory system in man under endogenous and exogenous heat loads.

  • Grucza, R
Published Article
Acta physiologica Polonica
Publication Date
Jan 01, 1990
PMID: 2136185


The aim of the present work was to estimate the dynamics and efficiency (eta sw) of sweating, and thermoregulatory index (TI) defined as a ratio of heat loaded the body to the heat removed to the environment. In the first part of this work 22 men exercised with an intensity of 50% VO2 max. in 22 degrees C, 16 men were exposed to 40 degrees C at rest, and 9 men exercised at the level of 50% VO2 max. at 30 degrees C. In the second part, 8 men and 8 women were exposed to 40 degrees C before and after dehydration (1% of body mass, approximately), 8 men exercised at 23 degrees C before and after hyperhydration (35 ml/kg of body mass) and 22 men exercised before and after 3 months of endurance training. Body heat balance, rectal (Tre), tympanic (Tty) and mean skin (Tsk) temperatures were measured in all subjects. TI was greater during simultaneous (0.84) than during separate endo- (0.76, p less than 0.01) or exogenous (0.67, p less than 0.001) heat loads. The respective values of eta sw were 0.82; 0.57 (p less than 0.001) and 0.78 (p less than 0.001). No difference in TI was found between men and women. Dynamics of sweating was greater in men but efficiency of sweating was greater in women. Dehydration before heat exposure decreased both dynamics of sweating and TI but it increased eta sw in men. As a result Tre was greater in dehydrated (0.45 degrees C) than in normally hydrated men (0.31 degrees C, p less than 0.002). Dehydration did not affect the measured variables in women. Hyperhydration of exercising men caused an increase in TI from 0.72 to 0.82 (p less than 0.05) and in eta sw from 0.57 to 0.81 (p less than 0.01). In men exercising after endurance training the onset of sweating was shortened from 4.0 to 0.9 min (p less than 0.002). TI increased from 0.76 to 0.89 (p less than 0.001), eta sw increased from 0.57 to 0.74 (p less than 0.02) whereas Tty was lower (1.10 and 0.58 degrees C, p less than 0.001, respectively). It is concluded that dynamics and efficiency of sweating, as well as the thermoregulatory index depend on the type of heat load. Men and women tolerate dry heat equally well. Dehydration changes thermoregulatory function in men but not in women. Hyperhydration before exercise and particularly endurance training increase tolerance of endogenous heat.(ABSTRACT TRUNCATED AT 400 WORDS)

Report this publication


Seen <100 times