Affordable Access

Access to the full text

Efficacy of NEMO-binding domain peptide used to treat experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus: an in-vivo study

  • Xu, Chang-Peng1
  • Chen, Ya1
  • Sun, Hong-Tao1
  • Cui, Zhuang2
  • Yang, Ya-Jun3
  • Huang, Lei2
  • Yu, Bin2
  • Wang, Fa-Zheng4
  • Yang, Qing-Po4
  • Qi, Yong1
  • 1 Guangdong Second Provincial General Hospital, NO.466 Xingang Road, Haizhu District, Guangzhou, 510317, People’s Republic of China , Guangzhou (China)
  • 2 Southern Medical University, Guangzhou, Guangdong, People’s Republic of China , Guangzhou (China)
  • 3 Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China , Zhanjiang (China)
  • 4 The First People’s Hospital of Kashgar Prefecture, Kashgar, Xinjiang, People’s Republic of China , Kashgar (China)
Published Article
Antimicrobial Resistance & Infection Control
BioMed Central
Publication Date
Nov 20, 2019
DOI: 10.1186/s13756-019-0627-y
Springer Nature


PurposeTreatment of chronic osteomyelitis (bone infection) remains a clinical challenge. Our previous study had demonstrated that NEMO-binding domain (NBD) peptide effectively ameliorates the inhibition of osteoblast differentiation by TNF-α in vitro. In this work, NBD peptide was evaluated in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model.MethodsTibial osteomyelitis was induced in 50 New Zealand white rabbits by tibial canal inoculation of MRSA strain. After 3 weeks, 45 rabbits with osteomyelitis were randomly divided into four groups that correspondingly received the following interventions: 1) Control group (9 rabbits, no treatment); 2) Van group (12 rabbits, debridement and parenteral treatment with vancomycin); 3) NBD + Van group (12 rabbits, debridement and local NBD peptide injection, plus parenteral treatment with vancomycin); 4) NBD group (12 rabbits, debridement and local NBD peptide injection). Blood samples were collected weekly for the measurement of leucocyte count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) levels. The rabbits in all four groups were sacrificed 6 weeks after debridement; the anti-infective efficacy was evaluated by radiological, histological, and microbiological examination, and promotion of bone remodeling was quantified by micro-CT using the newly formed bone.ResultsExcept two rabbits in the Control group and one in the NBD group that died from severe infection before the end point, the remaining 42 animals (7, 12, 12, 11 in the Control, Van, NBD + Van, and NBD group respectively) were sacrificed 6 weeks after debridement. In general, there was no significant difference in the leucocyte count, and ESR and CRP levels, although there were fluctuations throughout the follow-up period after debridement. MRSA was still detectable in bone tissue samples of all animals. Interestingly, treatment with NBD peptide plus vancomycin significantly reduced radiological and histological severity scores compared to that in other groups. The best therapeutic efficacy in bone defect repair was observed in the NBD peptide + Van group.ConclusionsIn a model of osteomyelitis induced by MRSA, despite the failure in demonstrating antibacterial effectiveness of NBD peptide in vivo, the results suggest antibiotics in conjunction with NBD peptide to possibly have promising therapeutic potential in osteomyelitis.

Report this publication


Seen <100 times