Affordable Access

Effects of NMDA- and AMPA-receptor antagonists on different forms of epileptiform activity in rat temporal cortex slices.

Authors
  • Zhang, C L
  • Gloveli, T
  • Heinemann, U
Type
Published Article
Journal
Epilepsia
Publication Date
Jan 01, 1994
Volume
35 Suppl 5
Identifiers
PMID: 7518770
Source
Medline
License
Unknown

Abstract

Lowering extracellular magnesium induces different patterns of epileptiform activity in rat hippocampus and entorhinal cortex. Short recurrent epileptiform discharges in the hippocampus are stable over time, whereas seizure-like events (SLEs) in the entorhinal cortex, the subiculum, and the neighboring neocortex develop into late recurrent discharges which are not blocked by clinically employed antiepileptic drugs. We tested the sensitivity of the different epileptiform discharge patterns to N-methyl-D-aspartate (NMDA)- and non-NMDA-receptor antagonists. As NMDA-receptor antagonist we used dextrorphan, ketamine, and 2-aminophosphonovalerate (2APV); as alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-receptor antagonist we employed the quinoxaline derivative glutamate 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The findings show that the different patterns of epileptiform activity, including the late recurrent discharges, are sensitive to all NMDA-receptor antagonists. However, when dextrorphan was employed to suppress seizure-like events, later recurrent discharges did not develop during the remaining time course of the experiment. CNQX reversibly suppressed recurrent discharges in the hippocampus and SLEs in the entorhinal cortex. However, late recurrent discharges become insensitive to CNQX, even at a high concentration of 60 microns. This finding suggests a prominent role for NMDA receptors in the generation of late recurrent discharges.

Report this publication

Statistics

Seen <100 times