Affordable Access

Effects of dietary essential amino acid deficiencies on immunological variables in broiler chickens.

Authors
Type
Published Article
Journal
The British journal of nutrition
Publication Date
Volume
83
Issue
4
Pages
449–456
Identifiers
PMID: 10858703
Source
Medline
License
Unknown

Abstract

Two experiments were conducted to determine the effects of essential amino acid deficiencies on several immunological variables in male broiler chickens. Essential amino acids were classified into five groups as follows: S-containing amino acids (SAA; methionine + cysteine), aromatic amino acids (AAA; phenylalanine + tyrosine), branched-chain amino acids (BCAA; isoleucine + leucine + valine), arginine plus lysine (Arg + Lys), and other essential amino acids (OEAA; glycine + serine + histidine + threonine + tryptophan). Chickens were fed ad libitum from 10 to 24 d of age on a control diet or amino-acid-deficient diets formulated to contain each amino acid group at 50% and 16% (Expt 1) at 50% (Expt 2) of the recommended requirements (National Research Council, 1984). Effects of feed consumption on immune responses were also considered by setting pair-feeding (Expt 1) or restricted-feeding (Expt 2) groups fed on the control diet. In Expt 1, changes in lymphoid organ weights varied with the type and degree of deficiency of amino acid groups, with BCAA deficiency markedly decreasing weights. The haemagglutinin titres against sheep erythrocytes did not change in any amino-acid-deficient chickens except that the titres were lower in chickens fed on the 50%- and 16%-BCAA diets as compared with their pair-fed counterparts. In Expt 2, the splenocyte proliferative response to concanavalin A was higher in the chickens fed on the BCAA- and Arg + Lys-deficient diets and lower in chickens fed on the SAA- and AAA-deficient diets than the control chickens, independent of feed consumption. These results suggest that the effects of specific amino acid deficiencies on immune responses cannot be generalized, and that BCAA have the greatest potential to modulate immune responses among the amino acids in chickens.

Statistics

Seen <100 times