Affordable Access

Access to the full text

The effects of climate change on landscape diversity: an example in Ontario forests

Authors
  • Thompson, Ian D.
  • Flannigan, Michael D.
  • Wotton, B. Michael
  • Suffling, Roger
Type
Published Article
Journal
Environmental Monitoring and Assessment
Publisher
Springer-Verlag
Publication Date
Feb 01, 1998
Volume
49
Issue
2-3
Pages
213–233
Identifiers
DOI: 10.1023/A:1005894525278
Source
Springer Nature
Keywords
License
Yellow

Abstract

The predicted increase in climate warming will have profound impacts on forest ecosystems and landscapes in Canada because of increased temperature, and altered disturbance regimes. Climate change is predicted to be variable within Canada, and to cause considerable weather variability among years. Under a 2 × CO2 scenario, fire weather index (FWI) is predicted to rise over much of Ontario by 1.5 to 2 times. FWI may actually fall slightly, compared to current values, in central eastern Ontario (Abitibi), but for central-south Ontario it is expected to rise sharply by as much as 5 times current values. We predict that the combination of temperature rise and greater than average fire occurrence will result in a shrinkage of area covered by boreal forest towards the north and east; that some form of Great Lakes forest type will occupy most of central Ontario following the 5 C isotherm north; that pyrophilic species will become most common, especially jack pine and aspen; that patch sizes will initially decrease then expand resulting in considerable homogenization of forest landscapes; that there will be little 'old-growth' forest; and that landscape disequilibrium will be enhanced. If climate change occurs as rapidly as is predicted, then some species particularly those with heavy seeds may not be able to respond to the rapid changes and local extinctions are expected. Anthropogenically-altered species compositions in current forests, coupled with fire suppression over the past 50 years, may lead to forest landscapes that are different then were seen in the Holocene period, as described by paleoecological reconstructions. In particular, forests dominated by white pine in the south and black spruce in the middle north may not be common. Wildlife species that respond at the landscape level, i.e., those with body sizes >1 kg, will be most affected by changes in landscape structure. In particular we expect moose and caribou populations to decline significantly, while white-tailed deer will likely become abundant across Ontario and Quebec.

Report this publication

Statistics

Seen <100 times