Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Effective potentials for quasicrystals from ab-initio data

Authors
  • Brommer, Peter
  • Gähler, Franz
Type
Published Article
Publication Date
Apr 02, 2007
Submission Date
Apr 02, 2007
Identifiers
DOI: 10.1080/14786430500333349
Source
arXiv
License
Unknown
External links

Abstract

Classical effective potentials are indispensable for any large-scale atomistic simulations, and the relevance of simulation results crucially depends on the quality of the potentials used. For complex alloys like quasicrystals, however, realistic effective potentials are practically inexistent. We report here on our efforts to develop effective potentials especially for quasicrystalline alloy systems. We use the so-called force matching method, in which the potential parameters are adapted so as to optimally reproduce the forces and energies in a set of suitably chosen reference configurations. These reference data are calculated with ab-initio methods. As a first application, EAM potentials for decagonal Al-Ni-Co, icosahedral Ca-Cd, and both icosahedral and decagonal Mg-Zn quasicrystals have been constructed. The influence of the potential range and degree of specialisation on the accuracy and other properties is discussed and compared.

Report this publication

Statistics

Seen <100 times