Affordable Access

Effect of surfactants and natural detergents on phosphatidylcholine synthesis in photoreceptor membranes.

Authors
  • Roque, M E
  • Castagnet, P I
  • Giusto, N M
Type
Published Article
Journal
Membrane & cell biology
Publication Date
Jul 01, 2001
Volume
14
Issue
5
Pages
587–604
Identifiers
PMID: 11699863
Source
Medline
License
Unknown

Abstract

The synthesis of phosphatidylcholine (PC) in rod outer segments (ROS) catalysed by lysophosphatidylcholine acyltransferase and phosphatidylethanolamine N-methyltransferase (PE N-MTase) was studied and the effects of natural (FA and lysophospholipids) and synthetic (Triton X-100, deoxycholate and CHAPS) surfactants was evaluated. In all experimental conditions used, incorporation of labelled oleate into lysophosphatidylcholine (lysoPC) was at least 40 times greater than oleate incorporation into any other lysophospholipid. Acylation of lysoPC was slightly affected by Triton X-100 and was totally inhibited in the presence of 10 mM sodium deoxycholate (NaDOC) or CHAPS. Below their critical micelle concentration (cmc) Triton X-100 and NaDOC stimulated acylation of all ROS lysophospholipids analysed. The activity of PE N-MTase was stimulated at detergent concentrations below the cmc and inhibited at concentrations above the cmc for all three detergents tested. The effect of FA with differing degree of unsaturation on PC synthesis was evaluated. Oleic acid (10 microM) inhibited methyl group incorporation into total PC, whereas from 100 microM onward, the methylating activity increased with preferential synthesis of PC. Docosahexaenoic acid, in turn, inhibited PE N-MTase activity at every concentration tested. These results suggest that PC synthesis in ROS membranes is modified by bioregulators and surfactants altering the physico-chemical state of the membrane.

Report this publication

Statistics

Seen <100 times