Effect of Environmental Factors on the Relationship between Concentrations of Coprostanol and Fecal Indicator Bacteria in Tropical (Mekong Delta) and Temperate (Tokyo) Freshwaters

Affordable Access

Effect of Environmental Factors on the Relationship between Concentrations of Coprostanol and Fecal Indicator Bacteria in Tropical (Mekong Delta) and Temperate (Tokyo) Freshwaters

Publisher
American Society for Microbiology
Publication Date
Feb 01, 2004
Source
PMC
Keywords
Disciplines
  • Chemistry
License
Unknown

Abstract

A reliable assessment of microbial indicators of fecal pollution (total coliform, Escherichia coli, and fecal streptococcus) is critical in tropical environments. Therefore, we investigated the relationship between concentrations of indicator bacteria and a chemical indicator, coprostanol (5β-cholestan-3β-ol), in tropical and temperate regions. Water samples were collected from the Mekong Delta, Vietnam, during wet and dry seasons, and from Tokyo, Japan, during summer, the aftermath of a typhoon, and winter. During the wet season in the Mekong Delta, higher bacterial densities were observed in rivers, probably due to the higher bacterial inputs from soil particles with runoff. In Tokyo, higher bacterial densities were usually observed during summer, followed by those in the typhoon aftermath and winter. A strong logarithmic correlation between the concentrations of E. coli and coprostanol was demonstrated in all surveys. Distinctive seasonal fluctuations were observed, as concentrations of coprostanol corresponding to 1,000 CFU of E. coli/100 ml were at their lowest during the wet season in the Mekong Delta and the typhoon aftermath in Tokyo (30 ng/liter), followed by the dry season in the Mekong Delta and the summer in Tokyo (100 ng/liter), and they were much higher during the winter in Tokyo (400 ng/liter). These results suggested that E. coli is a specific indicator of fecal contamination in both tropical and temperate regions but that the densities are affected by elevated water temperature and input from runoff of soil particles. The concurrent determination of E. coli and coprostanol concentrations could provide a possible approach to assessing the reliability of fecal pollution monitoring data.

Report this publication

Statistics

Seen <100 times