Affordable Access

The effect of hydrostatic pressure on the bilayer structure of phosphatidylcholines containing omega-cyclohexyl fatty acyl chains.

  • Hübner, W1
  • Wong, P T
  • Mantsch, H H
  • 1 Division of Chemistry, National Research Council, Ottawa, Canada.
Published Article
Biochimica et Biophysica Acta
Publication Date
Sep 07, 1990
PMID: 2397234


The barotropic behavior of aqueous dispersions of two representative omega-cyclohexyl phosphatidylcholines was investigated by pressure-tuning Fourier transform infrared spectroscopy. In the even-numbered homologue, 1,2-di-14-cyclohexyltetradecanoyl-sn-glycero-3-phosphocholine (14cyPC), the lipid molecules are orientationally disordered until the applied pressure reaches 2.1 kbar. This pressure marks the onset of correlation field splitting of the scissoring and rocking modes of the linear chain methylenes, as well as that of the cyclohexyl ring methylenes. It indicates immobilization of the entire acyl chains, whereby the zig-zag planes of the neighboring straight chain all-trans methylenes are oriented mainly perpendicular to each other. As judged from the magnitude of the correlation field splittings, the interchain interaction is weaker in 14cyPC than that in linear lipids (e.g., DMPC or DPPC). Upon an increase in pressure, up to 20 kbar, the zig-zag methylene planes in 14cyPC undergo a gradual transformation to a parallel orientation. In the odd-numbered homologue, 1,2-di-13-cyclohexyltridecanoyl-sn-glycero-3-phosphocholine (13cyPC), there is no correlation field splitting originating from the straight chain methylenes (up to 21 kbar). The linear, nonbranched segments of the omega-cyclohexyl chains in 13cyPC are closely packed with the all-trans methylene zig-zag planes oriented parallel to each other. There is, however, correlation field splitting of the ring methylenes, indicating interring interactions between the bulky cyclohexyl rings in opposing bilayer leaflets. There are major structural differences between the even- and odd-numbered homologues in the interfacial region, which remain even at high pressures. The ester carbonyl C = O stretching band in 14cyPC is a composite of two discrete bands which do not change considerably in intensity or frequency in the pressure range 2-20 kbar. In contrast, 13cyPC possesses an additional, low-frequency C = O stretching component at low pressures. As the pressure increases, the three component bands coalesce into a single C = O stretching band. Our results suggest equally oriented, fully hydrogen-bonded carbonyl groups in 13cyPC at pressures above approx. 10 kbar.

Report this publication


Seen <100 times