Affordable Access

Effect of high oxygen tensions on the growth of selected, aerobic, gram-negative, athogenic bacteria.

Authors
Type
Published Article
Journal
Journal of bacteriology
Publication Date
Volume
95
Issue
3
Pages
1003–1010
Identifiers
PMID: 5643043
Source
Medline
License
Unknown

Abstract

The in vitro effects of high O(2) tensions (P(O2)) on aerobic, enteric pathogens were examined at pressures of up to 3 atm absolute. Organisms from the genera Salmonella, Shigella, and Vibrio were usually subjected to 24-hr exposures. Tensions of 0.87, 1.87, and 2.87 atm absolute of O(2) (plus traces of CO(2) and N(2)) became progressively inhibitory for Salmonella and Shigella growth, but were bactericidal only for V. comma strains at tensions greater than 0.87 atm absolute of O(2). Growth inhibition of enteric organisms resulted from increased P(O2), rather than pressure per se, and could be mitigated nutritionally; an appropriate carbohydrate source is at least partially involved. Further studies with vibrios indicated that such mitigation was independent of medium pH. In addition, a synergistic relationship existed between O(2) and sulfisoxazole when tensions from 0.87 to 2.87 atm absolute of O(2) were maintained for 3 to 24 hr. Synergism occurred even under nutritional conditions which negated growth inhibition by O(2) alone. Bactericidal concentrations of sulfisoxazole, in the presence of increased P(O2), were reducible up to 4,000-fold. The combined procedure employed in this investigation, by use of an antimicrobial drug of known action, which also synergizes with O(2), plus nutritional studies, suggests a means for establishing a site of O(2) toxicity. These data support the concept that O(2) inhibition of growth represents a metabolic disturbance and that metabolic pathways involving p-aminobenzoic acid may be O(2)-labile. Such an approach could also guide development of antimicrobial agents as O(2) substitutes for promoting synergism.

Statistics

Seen <100 times