Affordable Access

Access to the full text

Effect of gas temperature and nozzle traverse speed on the deposition efficiency in cold spraying

Authors
  • Shikalov, V. S.1
  • Klinkov, S. V.1
  • Kosarev, V. F.1
  • 1 Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, Russia , Novosibirsk (Russia)
Type
Published Article
Journal
Thermophysics and Aeromechanics
Publisher
Kutateladze Institute of Thermophysics SB RAS
Publication Date
Jan 01, 2021
Volume
28
Issue
1
Pages
77–86
Identifiers
DOI: 10.1134/S086986432101008X
Source
Springer Nature
Keywords
License
Yellow

Abstract

The influence of the stagnation temperature of the accelerating gas flow and that of nozzle travel speed on the deposition efficiency are studied when depositing single Cu-coating tracks by the cold spray technique. The experiments performed clearly show that the nozzle traverse speed substantially affects the value of measured deposition efficiency: the higher is the nozzle traverse speed, the lesser the measured deposition efficiency turns out to be at all other things being identical. Such a behavior can be explained by the fact that the first impacts of particles onto the substrate do not lead to their adhering to the surface and, hence, to coating deposition. It is known that, before the coating starts to grow, it is necessary for the substrate surface to be subjected to a sufficient number of particle impacts. This preparatory stage is called the activation stage, or the delay (induction) stage of the deposition process. It is shown for the first time that the specific (per unit area) mass of the powder consumed at the activation stage depends on the stagnation temperature of the accelerating gas flow: the higher is the stagnation temperature, the lower is the specific mass consumed.

Report this publication

Statistics

Seen <100 times