Affordable Access

deepdyve-link deepdyve-link
Publisher Website

The effect of chitosan molecular weight on the characteristics of spray-dried methotrexate-loaded chitosan microspheres for nasal administration.

Authors
Type
Published Article
Journal
Drug Development and Industrial Pharmacy
1520-5762
Publisher
Informa UK (Taylor & Francis)
Publication Date
Volume
35
Issue
3
Pages
379–386
Identifiers
DOI: 10.1080/03639040802395185
PMID: 18951272
Source
Medline
License
Unknown

Abstract

In this article, the effect of the chitosan molecular weight (MW) on the characteristics of methotrexate (MTX)-encapsulated non-cross-linked chitosan microspheres was studied. Microspheres composed of low-molecular-weight (LMW, 40,000 Da), medium-molecular-weight (MMW, 480,000 Da) and high-molecular-weight (HMW, 850,000 Da) chitosan with the same degree of deacetylation (96%) were obtained by a simple spray-drying method. The MW of chitosan had a noticeable influence on the size distribution, encapsulation efficiency, micromeritic properties (angle of repose and bulk density), controlled release behavior, and mucoadhesive properties. The entrapment efficiencies were in the range of 90-99%. Spray-dried microspheres had a D(50) value of 3.3-4.9 microm, which was suitable for nasal insufflations. The microspheres with LMW chitosan have the best flowability and highest bulk density but were found to be poor in terms of adhesion and in controlling the release behavior of MTX. The MMW chitosan microspheres exhibited the strongest adhesion to the mucosal surface, and the angle of repose values were between 34 and 47 degrees. They could control the release rate by modifying the drug/polymer ratios. Microspheres with HMW chitosan exhibited a lower adhesion than MMW chitosan and a lower release rate of MTX. The physical state of MTX in the chitosan matrix was studied by differential scanning calorimetry, which indicated the presence of a solid dispersion of the amorphous drug in the chitosan matrix. Nasal ciliotoxity showed only minor cilia irritation due to the microspheres, and consequently, they are suitable for nasal drug delivery.

Statistics

Seen <100 times