Affordable Access

Effect of bicarbonate on glutamine and glutamate metabolism by rat kidney cortex mitochondria.

Authors
  • Scaduto, R C Jr
  • Schoolwerth, A C
Type
Published Article
Journal
The American journal of physiology
Publication Date
Oct 01, 1985
Volume
249
Issue
4 Pt 2
Identifiers
PMID: 2864861
Source
Medline
License
Unknown

Abstract

Isolated rat kidney cortex mitochondria were incubated at pH 7.4 in the presence or absence of a CO2/bicarbonate buffer (28 mM) to investigate the pH-independent role of bicarbonate on glutamine and glutamate metabolism. Changes in the concentration of key intermediates and products during the incubations were used to calculate metabolite flux rates through specific mitochondrial enzymes. With 1 mM glutamine and 2 mM glutamate as substrates, bicarbonate caused an inhibition of glutamate oxalacetate transaminase flux and a stimulation of glutamate deamination. The same effects were also produced with addition of either aminooxyacetate or malonate. These effects of bicarbonate were prevented when 0.2 mM malate was included as an additional substrate. Bicarbonate ion was identified as a potent competitive inhibitor of rat kidney cortex succinate dehydrogenase. These results indicate that aminooxyacetate, malonate, and bicarbonate all act to stimulate glutamate deamination through a suppression of glutamate transamination, and that the control by transamination of glutamate deamination is due to alterations in alpha-ketoglutarate metabolism. In contrast, in mitochondria incubated with glutamine in the absence of glutamate, bicarbonate was found to inhibit glutamate dehydrogenase flux. This effect was found to be due in part to the lower intramitochondrial pH observed in incubations with bicarbonate. These findings indicate that bicarbonate ion, independent of pH, may have an important regulatory role in renal glutamine and glutamate metabolism.

Report this publication

Statistics

Seen <100 times