Affordable Access

The effect of acute hypoglycemia on the cerebral NMDA receptor in newborn piglets.

Authors
  • McGowan, J E
  • Haynes-Laing, A G
  • Mishra, O P
  • Delivoria-Papadopoulos, M
Type
Published Article
Journal
Brain Research
Publisher
Elsevier
Publication Date
Jan 30, 1995
Volume
670
Issue
2
Pages
283–288
Identifiers
PMID: 7538027
Source
Medline
License
Unknown

Abstract

The effects of acute insulin-induced hypoglycemia on the cerebral NMDA receptor in the newborn were examined by determining [3H]MK-801 binding as an index of NMDA receptor function in 6 control and 7 hypoglycemic piglets. In hypoglycemic animals, the glucose clamp technique with constant insulin infusion was used to maintain a blood glucose concentration of 1.2 mmol/l for 120 min before obtaining cerebral cortex for further analysis; controls received a saline infusion. Concentrations of glucose, lactate, ATP, and PCr were measured in cortex, and Na+,K(+)-ATPase activity was determined in a brain cell membrane preparation. [3H]MK-801 binding was evaluated by: (1) saturation binding assays over the range of 0.5-50 nM [3H]MK-801 in the presence of 100 microM glutamate and glycine; and (2) binding assays at 10 nM [3H]MK-801 in the presence of glutamate and/or glycine at 0, 10, or 100 microM. Blood and brain glucose concentrations were significantly lower in hypoglycemic animals than controls. There was no change in brain ATP with hypoglycemia, but PCr was decreased 80% compared to control (P < 0.05). Na+,K(+)-ATPase activity was 13% lower in hypoglycemic animals (P < 0.05). Based on saturation binding data, hypoglycemia had no effect on the number of functional receptors (Bmax), but the apparent affinity was significantly increased, as indicated by a decrease in the Kd (dissociation constant) from the control value of 8.1 +/- 1.6 nM to 5.5 +/- 2.1 nM (P < 0.05). Augmentation of [3H]MK-801 binding by glutamate and glycine alone or in combination was also significantly greater in the hypoglycemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

Report this publication

Statistics

Seen <100 times